×

生物学家格里菲斯

生物学家格里菲斯(生物学家格里菲斯是哪国人)

admin admin 发表于2023-12-22 08:43:39 浏览63 评论0

抢沙发发表评论

大家好,关于生物学家格里菲斯很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于生物学家格里菲斯是哪国人的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

本文目录

生物学家格里菲斯是哪国人

不知道楼上从那里看到的。我没有找到格里菲斯的生平简介。所以无法说明你的是对是错!!但是我从一篇《神秘的遗传物质》一文中发现了这么一段话,里面可说他是美国人,大大的美国人:“2."死菌"怎么复活了就像孙悟空遇到唐僧一样,核酸出头的日子终于到了。而扮演唐僧角色的首先是美国科学家格里菲斯,然后是埃弗里。1928年,格里菲斯做了一个实验,使人们对生物的遗传有了新的理解,这就是著名的"肺炎球菌转化实验"。肺炎球菌有两种类型,一种是有荚膜的,毒性很强,会使老鼠生病死亡;另一种是无荚膜的,没有毒性,不会使老鼠生病。格里菲斯用高温将有毒性的菌杀死,注射到老鼠体内,结果老鼠平安无事。可是,接下来,当他把被杀死的毒性菌与活的无毒性菌混在一起,再注射到老鼠体内时,奇怪的事情发生了:老鼠死了。难道死菌又复活了吗?不可能啊。格里菲斯又进一步做了体外试验,把有毒菌的尸体和无毒菌放在一起培养,结果发现,无毒菌的许多后代,被转化成有毒菌了!格里菲斯猜想,这一定是被杀死的有毒菌提供了一种物质促成了这种转化,但什么物质他不清楚。”不知道楼主所说的是格里菲斯是不是这个时期的。不过美国这个格里菲斯生物学家可是世界闻名的哦 生卒年份为1877--1941。

为什么格里菲斯实验能证明转化因子是遗传物质

格里菲斯实验时还没有DNA的概念,他只是证明存在转化因子,艾弗里的实验证明了转化因子是DNA。他们的实验就好像接力赛跑一样,格里菲斯跑了第一棒,艾弗里跑了第二棒,当然后面还有一系列进一步的实验格里菲斯将来自III-S品系的细菌以高温杀死,再将其残骸与活的II-R品系混合。实验结果显示此组合可将宿主老鼠杀死,而且从这些死亡的老鼠体内,可分离出活的III-S品系与II-R品系。因此格里菲斯提出一项结论,认为II-R品系被死亡的III-S品系所含的一种转型因子(transforming principle)所“转型”成为具有致命性的III-S。后来其他人的研究显示,这种转型因子是III-S的DNA(由奥斯瓦尔德·埃弗里发现)。虽然III-S已经死亡,但是DNA在加热过程中仍然能够保存,因此当III-S残骸与活体II-R混合在一起时,II-R便接收了源自III-S的DNA,进而获得能够生成多糖荚膜的基因,使宿主的免疫系统无法杀死,造成宿主的死亡。另附:在高中生物必修2 中艾弗里的实验是在培养基中进行的,而格里菲斯是以小鼠为实验材料的。一、肺炎双球菌转化实验1.小鼠体内转化实验肺炎双球菌有具多糖荚膜的致病菌S型菌(Smooth,因菌落外观光滑)和非致病菌R型菌(Rough,因菌落外观粗糙)。荚膜有不同的构造,根据免疫反应可以分成I型、II型、III型等,细菌是否具有产生荚膜的能力以及产生荚膜的类型为“遗传特性”。1928年,在英国卫生部任职的医生格里菲斯对肺炎球菌的致病情况做了研究。当他把热处理的S细菌(III-S型)与活的R细菌(II-R型)的混合物注射到小鼠中时,尽管这两种细菌本身都不是致死的,但是小鼠还是死亡了!更重要的是,从注射了这类混合物而死亡的小鼠身上分离得到S型菌,而且是与加热杀死的S细菌相同的S型(III-S),因此这些S细菌不可能是通过这些特定的R细菌突变而来的。格里菲斯将这种引起转化的未知物质称为转化因子,他不知道转化因子的本质,但错误地猜想它可能是一种涉及到荚膜合成的蛋白质,或是一些作为细菌荚膜前体的物质。对此实验,不同的科学家分别做出三种假说:(1)R型菌以某种方式使加热杀死的S型菌“复活”。(2)III-S品系死菌刺激小鼠体内产生免疫物质,后者刺激II-R品系突变成了III-S品系。(3)III-S型菌的遗传物质进入II-R型菌,合成了III-S型菌的荚膜。2.体外转化实验1931年,道森和西亚成功地在体外进行了转化实验:只在培养皿中使II-R型菌转化成III-S型菌,不需要以小鼠为媒介。——这否认了因小鼠体内免疫物质诱导的解释。1933年,阿洛维将II-R型菌和III-S型菌的无细胞提取液(所有完整细胞、细胞碎片、荚膜分子都通过离心和过滤从提取物中去掉)混合,培养皿上仍长出了III-S型菌。——这否认了R型菌以某种方式使加热杀死的S型菌“复活”。因此,结论是S型菌细胞提取物中含有转化因子,而它的化学本质还是未知的。1935年至1944年,经历了10年的不断研究,美国洛克菲勒学院的三位免疫化学家艾弗里、麦克劳德、麦卡提证明了DNA是肺炎球菌的遗传物质。艾弗里的实验其实并不是如高中教材所说的那样,“将提纯的DNA、蛋白质和荚膜多糖等物质分别加入到培养了R型细菌的培养基中,结果发现:只有加入DNA,R型细菌才能够转化为S型细菌”。艾弗里等人的工作实际是:不断地去除S型细菌中各种成分,然后得到纯化的“转化因子”;接着对纯化的“转化因子”进行鉴定,确认它就是DNA。并不是像高中教材中说的那样:对S型细菌中的各种成分进行提纯,再用提纯的各种成分去做转化实验测试。转化因子中DNA纯度越高,转化效率越高;当用DNA酶处理转化因子后,则没有转化功能。但即使用蛋白质酶处理转换因子,转化效率也不降低。1944年,当艾弗里等人提取的“最纯”的DNA中,仍有1%的蛋白质杂质。到1949年,Rollin Hotchkiss提纯的DNA中仅含0.02%的氨基酸杂质(后来的研究表明,这些氨基酸是核酸降解后的核苷酸经生化反应生成的,不是之前组成蛋白质的氨基酸)。仍具有转化能力。 Rollin Hotchkiss还证实了和荚膜无关的细菌性状也能转化。事实上,艾弗里的实验已经严谨地证明了DNA是遗传物质,只是受当时科学界的环境所限,他的结果受到指责,不被接受。当时的反对者主要有一下三种观点:(1)受“四核苷酸”假说的局限,认为四种碱基的含量是相同的,DNA是四核苷酸的简单的多聚体,就如淀粉是葡萄糖的多聚体那样,因此DNA不太可能是含有复杂遗传信息的遗传物质。(2)认为转化实验中DNA并未能提得很纯,还有蛋白质杂质,可能正是这些少量的特殊蛋白在起转化作用。当时人们难以忘记二十年前著名的生化学家维尔施泰特由于不能将酶提纯而错误宣称酶不是蛋白的沉痛教训。(3)认为即使转化因子确实是DNA,但也可能DNA只是对荚膜形成起着直接的化学效应,而不是充当遗传信息的载体。二、噬菌体侵染细菌实验1952年,赫尔希和蔡斯做了T2噬菌体侵染埃希氏大肠菌(简称大肠杆菌)实验。在进行实验之前,他们已知噬菌体的侵染开始于噬菌体对细菌的附着,结束于被侵染细菌的裂解和子代噬菌体的释放,中间发生的事情尚不明确。但噬菌体的遗传物质,无论它是什么,都必须进入细菌中。T2噬菌体由核酸和蛋白质衣壳组成。核酸是唯一含磷元素的,蛋白质衣壳是唯一含硫元素的。他们先分别用含32P的磷酸盐培养基和含35S的硫酸盐培养基培养大肠杆菌,接着用T2噬菌体侵染大肠杆菌,这样就分别得到了带32P标记核酸和35S标记蛋白质衣壳的噬菌体。用带标记的噬菌体分别侵染普通的大肠杆菌,一段时间后离心,再分别检测离心后的上清液和沉淀中的放射性。该实验又被称为搅拌机实验,因为搅拌离心是实验中很关键的一步。通过离心能使噬菌体的进入细菌细胞的部分和未进入细胞的部分强行分开。若不搅拌或很长时间时候才搅拌,T2噬菌体就完成复制,裂解大肠杆菌而释放了。这样就没有“沉淀”和“上清”的区别了,检测放射性也失去了意义。当时发现75%的35S标记在上清液中,25%在沉淀中。(若干年后表明,25%仍然与细菌相关联的35S,主要由与噬菌体相关的尾部碎片构成,这些碎片与细菌表面黏附过于紧密,而不能通过搅拌去掉。)当时发现85%的32P仍然与搅拌后沉淀中的细菌细菌相关联,只有15%的32P位于上清液中。上清液中放射性的大约1/3,被认为是搅拌时细菌的破裂造成的。(若干年后表明,剩下的2/3是附着在细菌上有缺陷的噬菌体颗粒造成的,这些噬菌体颗粒不能注射它们的DNA。)更重要的是,32P标记噬菌体产生的子代噬菌体中,检测到了32P;而35S标记噬菌体产生的子代噬菌体中,(按实验论文的原文)放射性不到1%。由于并不是组成蛋白质的所有氨基酸都含硫(硫元素只能标记甲硫氨酸和半胱氨酸),因此该实验无法证实是否有不含硫而未被标记的蛋白质进入细胞并起到遗传功能。所以从严谨和精确程度上,它不如艾弗里的实验。但由于当时的科学界已经普遍接受了蛋白质不是遗传物质,并对DNA研究火热,加上噬菌体小组在分子生物学领域的巨大影响力,使得赫尔希-蔡斯实验被广泛接受,甚至作为DNA是遗传物质的最后证明。而艾弗里的实验则常常被人们故意忽略,以致某些教科书甚至把赫尔希-蔡斯的实验作为证明DNA是遗传物质的唯一实验。后来在艾弗里的同事的强烈主张下,才加入了对艾弗里实验的介绍。后来的Phi X 174噬菌体实验,将病毒分离成DNA和蛋白质衣壳两部分,仅有病毒的DNA就具有感染能力,而病毒的蛋白质衣壳不具备感染能力。这才最终证实了DNA是遗传物质。1969年,赫尔希和德尔布吕克、卢瑞亚一起,获得了诺贝尔生理学或医学奖。科学家的背景材料:格里菲斯是低调而又务实的人。唯一一次参加学术会议是1936年的微生物大会,还是被他的朋友硬拉去的。他在会上敷衍地做了一个报告。他的报告和他1928年著名的肺炎球菌转化实验毫不相关,因为当时他自己都没意识到他转化的实验的重要性。1941年,在一次纳粹德国对伦敦的空袭中,格里菲斯和同事不幸牺牲在实验室中。1913年,艾弗里的母亲不幸死于肺炎,36岁的性格内向的艾弗里从此立志称为一名细菌学家,研究肺炎。

人类对微生物的发现与探索之路

人类对微生物的了解、 探索 任重而道远,对微生物组的研究有望为人类 健康 问题和 社会 可持续发展提供新的解决之道。

地球上微生物的诞生可以追溯到35亿年前,远早于人类的诞生。然而,人类与微生物却“相识”甚晚,自1676年荷兰人列文虎克(Antony van Leeuwenhoek)用自制的简单显微镜观察到细菌开始,仅短短的几百年,但这一发现为人类揭开了一个崭新的世界。

人类对微生物的利用

远早于对其的科学认识

在列文虎克通过显微镜观察到细菌之前,其实人类早已开始了对微生物的利用,只是未从科学角度对微生物的形态、功能及作用机制进行描述。

早在上古时代,我国就已开始利用曲糵(发霉、发芽的谷粒)进行酿酒,但一直不知道曲糵的本质所在。考古学家在我国贾湖遗址的陶器沉积物中发现了酒石酸成分,经碳-14年代测定距今有9000多年,说明当时人们已经开始通过发酵酿造技术制作饮料,是目前世界上发现的最早与酒有关的实物资料。公元6世纪,贾思勰在《齐民要术》中明确记载了谷物制曲、酿酒、制酱、造醋、腌菜等利用微生物制作食品的方法。

除了食品制作外,我国人民很早就将微生物用于农业生产和医疗。春秋战国时期,劳动人民从生产实践中发现腐烂在田里的杂草可以使庄稼长得茂盛,于是开始用腐烂的野草和粪作为肥料;公元前1世纪,世界现存最早的农学著作《氾胜之书》曾提出,利用瓜类和小豆间作的种植方法来提高作物产量;《神农本草经》记载了白僵蚕(即感染白僵菌而僵死的家蚕幼虫)的功效与用法;《左传》也有关于用麦曲治疗腹泻病的记载;《医宗金鉴》则详细记载了种痘防治天花的方法。

西方国家也同样有利用微生物的 历史 ,如公元前3000年左右,古埃及人就首先掌握了制作发酵面包、酿制果酒的技术。尽管当时人们通过日积月累的生活实践,已经学会巧妙地利用微生物来改善自己的生产和生活,但是他们并不知道这些方法的实质是微生物在发挥作用。

显微镜的发明让

人类与微生物相识

除了在生产、生活实践中利用微生物外,人类也经受着各种微生物制造的威胁,如瘟疫等。但是,当时人们并不知道是微生物在其中“作怪”。尽管如此,一些科学家还是预见到了某种未知的实体在其中发挥了作用。1642年,明末清初传染病学家吴有性曾在其著作《瘟疫论》中提出传染病“乃天地间别有一种异气所感”,并指出“气即是物,物即是气”,对微生物的存在进行了较为粗浅的预见。

16世纪末,简易的显微镜在荷兰诞生,但当时人们并没有将其应用于科学研究中。直到17世纪80年代,列文虎克用其自制的可放大160倍的显微镜对雨水、污水、血液、腐败了的物质、牙垢等进行观察,发现了许多“活的小动物”。他利用显微镜持续地对这些“活的小动物”的具体形态进行了观察和详细描述,并将结果发表在《皇家学会哲学学报》,从此打开了人类对微生物研究的大门。列文虎克也成为世界上第一个观察到球形、杆状和螺旋形的细菌和原生动物的人。

在列文虎克之后,不少研究者也通过显微镜对微生物的形态等进行了研究,不断充实和扩大人类对微生物的认知。然而,在其后200年左右的时间里,人类对微生物的认识依旧停留在对其形态的描述上,对它们的生理活动、作用规律以及它们是如何影响人类 健康 和生产实践的仍一无所知。

对“自然发生说”的否定

推动了微生物学科的发展

尽管列文虎克等科学家开启了微生物研究的大门,但千百年来普遍流行的“自然发生说”依旧盛行,并于18世纪和19世纪达到了顶峰。“自然发生说”认为,生物可以从无生命物质或有机物中自然发生,而不是通过上一代此类生物繁衍产生。

“微生物学之父”、法国科学家巴斯德(Louis Pasteur)并不这样认为。1859年,他巧妙地设计了著名的曲颈瓶实验对“自然发生说”进行了反驳。在实验中,他选择了曲颈瓶与直颈瓶进行对比,在两个瓶内都装入肉汁,分别用火加热,通过高温对肉汁及烧瓶杀菌,结果曲颈瓶由于颈部弯曲且较长,使空气中的微生物在侧管沉积而不能进入烧瓶,煮过的肉汁不再和空气中的细菌接触,并未发生腐败,而直颈瓶内的肉汁则很快发生了腐败。这个实验有力地反驳了“自然发生说”,证明了微生物在腐败食品上并不是自发产生的。巴斯德在研究制酒时酒为什么会变酸的过程中,证明了并非发酵产生微生物,而是微生物引起了发酵,并发现环境、温度、pH值、基质成分以及有毒物质等因素都以特有的方式影响着不同的微生物。为了解决酒变酸这一问题,他发明了“巴氏灭菌法”,即利用较低温度做短时间加热处理,杀死有害微生物的同时又能保持食品中营养物质风味不变的消毒法。这种方法至今仍在食品生产中被广泛使用。

巴斯德还一直致力于致病微生物及免疫方法的研究,开创人类防治传染病的新时代。19世纪50年代起,巴斯德通过对蚕病、牛羊炭疽病、鸡霍乱和人狂犬病等传染病病因的探究试验对“疾病细菌学说”进行论证,证明了微生物是引起传染性疾病的媒介。1881年,巴斯德公开演示证明了给 健康 的牛注射毒性减弱的炭疽杆菌,会使这种病发作轻微但不致命,之后还会使牛对此病产生免疫力。这次演示引起了医疗界和 社会 的巨大轰动,为人类与传染病的斗争提供了新的武器。随后,他又成功地研制出鸡霍乱疫苗、狂犬病疫苗等多种疫苗,拯救了无数的生命,为免疫学的创立奠定了基础。

在巴斯德以实践论证“疾病细菌学说”的同时,德国医生科赫(Robert Koch)于1876年在《植物生物学》杂志上发表了关于炭疽杆菌的研究成果,引起巨大的反响。这是人类 历史 上第一次用科学的方法证明某种特定的微生物是某种特定疾病的病原。科赫首先从牛的脾脏中找到了引起炭疽病的炭疽杆菌,并把其移种入老鼠体内,使老鼠之间相互感染炭疽病,最后又从其他老鼠体内找到了同样的炭疽杆菌。随后,科赫成功地利用血清在与牛体温相同的条件下培养了炭疽杆菌,并发现了炭疽杆菌的生活规律。1881年,科赫发明了固体培养基划线分离纯种法,解决了液体培养基培养细菌时各种细菌混合生长难以分离的问题,这种方法的发明使得多种传染病病原菌相继被发现。为了更加清晰地对细菌的形态进行观察,科赫对细菌试验的方法进行了改进,如干燥方法、染色方法等,还建立了悬滴标本检查法和显微摄影技术。此外,科赫还提出了一套系统的研究方法——“科赫原则”。这些研究和技术方法至今仍在使用,为微生物学研究奠定了方法学基础。研究者开始运用“实践—理论—实践”的思想方法开展微生物研究工作,并建立了许多应用性分支学科,如细菌学、真菌学、土壤微生物学等。这不仅丰富了微生物学的研究内容,大大加速了微生物学的发展,也使得19世纪70年代到20世纪20年代成为病原菌发现的黄金时代,大量的病原菌浮出水面,使人类对疾病有了更深的认识。

青霉素的发现与应用

推动了微生物工业化培养技术的发展

1897年,德国生物化学家布赫纳(Edward Buchner)用酵母菌无细胞压榨汁对葡萄糖进行酒精发酵获得成功,证明了发酵过程主要是依靠酵素而不是酵母细胞发挥作用,从而发现了酒化酶,将微生物学从生理研究阶段推进到了生化研究阶段。随后,研究者开始广泛寻找微生物的有益代谢产物,许多酶、辅酶、抗生素都是在这一时期被发现的。这些发现推动了普通微生物学的形成。

这一阶段,最有代表性的发现和发明当数青霉素。19世纪,工业革命大大提高了人们的生活水平,但细菌感染导致的死亡率居高不下。在这个没有抗菌药物的时期,面对肆虐的疫情,人们束手无策。19世纪末至20世纪初期,尽管人类已经开始采用苯酚、硼酸、醇类进行手术消毒,大大降低了术后患者的死亡率,但这类消毒试剂并不能深入病灶,对于已经存在的细菌感染仍无法治愈。1908年,德国科学家埃尔利希(Paul Ehrlich)发现了化合物砷矾纳明可用于治疗梅毒,拉开了人类寻找抗菌药物的序幕。

1928年,英国细菌学家弗莱明(Alexander Fleming)意外发现在他的实验室里有一个葡萄球菌培养基受到了一种霉菌的污染,培养基中受污染区域里的葡萄球菌消失了。经过几天的观察,弗莱明发现霉菌逐渐发展成了菌落,培养汤呈淡黄色,还具有了杀菌能力。于是,他推断真正的杀死葡萄球菌的物质应该是霉菌生长过程中的代谢产物。他将这种代谢产物命名为青霉素,并发现青霉素能抑制多种有害细菌的生长,对人和动物却无毒。1929年弗莱明将其研究结果发表在《英国实验病理学杂志》上,尽管当时并未引起学术界的高度重视,但弗莱明坚信青霉素将会有重要的用途。由于弗莱明当时并没有对青霉素治疗效果开展系统性的观察试验,且他并不了解生化技术,无法将青霉素提取和纯化,难以在实际中应用,这一成果就这样被埋没了10多年。

20世纪40年代,澳大利亚裔英国病理学家弗洛里(Howard Florey)和德裔英国生物化学家钱恩(Ernst Chain)偶然发现了弗莱明的论文,产生了极大的兴趣。他们重复了弗莱明的试验,对青霉素进行了提取和纯化,并进行了动物试验。1940年8月,他们将研究的全部成果发表在《柳叶刀》杂志上,被医学史上称作“青霉素的二次发现”。1941年2月,他们成功地运用青霉素治愈了一位因划破了脸导致伤口感染而患了败血症的警察。尽管试验清楚地表明了这种新药具有惊人的效力,但单靠实验室提取,并不能满足人类的需求。随着第二次世界大战爆发,英国、美国政府意识到要想将青霉素广泛地应用于各种疾病以及伤员救治中,就必须实现工业化大规模生产。在美国政府的鼓励和制药企业的参与下,青霉素得以大规模生产和应用到战争伤员的治疗中,并逐步在公民医疗中使用,惠及全世界。青霉素的发现和应用开启了一场从自然界天然菌体中筛选出抗生素的运动,链霉素、头孢菌素、万古霉素、红霉素等天然抗生素相继被发现和应用,人类终于在与致病细菌的搏斗中略占上风。

DNA双螺旋结构模型的

建立使微生物研究进入分子水平

1928年,英国细菌学家格里菲斯(Frederick Griffith)通过试验发现把活的RⅡ型无毒肺炎双球菌株和死的SⅢ型有毒株,混合注射至 健康 小鼠体内,小鼠患病死亡,且能从小鼠体内提取出活的SⅢ型有毒株,并且这种有毒株能世代繁衍,即细菌转化现象。由于当时技术水平的限制,格里菲斯并没有确定究竟是什么物质导致了细菌转化,但格里菲斯的试验为后来证实DNA就是遗传物质提供了宝贵的思路。随着化学提纯等技术的进步,美国科学家艾弗里(Oswald Avery)、麦克劳德(Colin Macleod)和麦卡蒂(Maclyn McCarty)对格里菲斯的工作进行了延伸,成功解释了细菌转化的原因,证明了引起转化现象的是细胞内的脱氧核糖核酸分子,而非当时人们普遍认为的蛋白质,开启了分子遗传学研究的大门。1953年,英国生物学家克里克(Francis Crick)和美国分子生物学家沃森(James Watson)建立的DNA双螺旋结构,让人们真正了解了遗传信息的构成和传递的途径,正式开启了分子生物学时代。

在科学家破解“遗传的秘密”的同时,1933年,德国物理学家鲁斯卡(Ernst Ruska)研制出了世界首台电子显微镜,让人类能够更加清楚地认识微生物细胞的详细结构,为 探索 更加微观的生物世界奠定了坚实的技术基础。微生物学研究便逐渐成为生物学研究领域的“明星”,被推到了整个生命科学发展的前沿,获得了迅速的发展,大约1/3的诺贝尔生理学或医学奖获得者都是由于其在微生物问题研究中获得的成就而获得殊荣。

1946年,美国遗传学家莱德伯格(Joshua Lederberg)与塔特姆(Edward Tatum)通过试验发现了细菌的遗传重组。他们把两个需要不同生长因子的大肠杆菌营养缺陷型混合培养在基本培养基上时出现了野生型,而分别培养时则从未出现,从而说明了遗传重组的普遍性。1952年,莱德伯格发现了细菌的F因子,揭示了作为供体细胞的细菌可以把遗传物质传递给作为受体细胞的细菌。莱德伯格的一系列研究证明了特定细菌可通过杂交方式进行繁殖,有力地反驳了当时科学界认为的“细菌太过简单,不适合进行遗传分析研究”的观点。此外,莱德伯格在研究中还创立了一套强有力的细菌遗传学试验方法,为细菌遗传学的建立奠定了基础,后续对细菌遗传学的研究大多基于这一试验方法开展。

1977年,美国科学家乌斯(Carl Woese)率先利用核糖核酸(RNA)研究原核生物的进化关系,提出了“生物三域理论”,即可将自然界的生命分为细菌、古生菌和真核生物三域,揭示了各种微生物之间的系统发育关系,使微生物学研究进入成熟阶段。在这一阶段,研究者更多地在基因和分子水平上研究和揭示微生物的生命活动规律,包括研究微生物大分子结构和功能,不同生理类型微生物的各种代谢途径、代谢活动等,微生物的形态构建和分化、病毒的装配以及微生物的进化等。

微生物学的基础理论和独特实验技术催生了大量理论性、交叉性、应用性和实验性分支学科飞速发展。同时,人类在应用微生物改善生产、生活方面,也朝着更有效、更可控的方向发展,如以大肠杆菌等细菌细胞为工具进行基因转移、等,或通过基因工程技术开发菌种资源提高发酵工程效率。

新一轮 科技 革命的

战略前沿领域——微生物组

人类对微生物的研究已超过百年,越来越多的研究表明了微生物在人类生产、生活中的重要作用。然而,尽管随着显微技术、成像技术、测序技术等的不断发展,人类对微生物的研究经历了从生理、生化到分子层面的演进,但我们对微生物依然缺乏了解,从数量上看目前人类所认知的微生物还不足其总量的1%。

随着人类对生命奥秘的 探索 越来越深入、越来越迫切,生命科学与其他科学的融合交叉也越来越密切,基因组学、蛋白质组学等研究逐步形成体系,把单个生命体作为一个复杂系统、把生态系统作为一个有机整体进行研究,已成为当今生命科学研究的主要特征,对微生物的研究也是如此。目前,学术界界定的微生物组是指一个生态系统中全部微生物资源及生命信息,包括它们与其环境中生物和非生物因子之间的各种关系。可以说,从人到地球生态系统的各种大大小小的系统中,微生物组无处不在,且互相紧密结合,微生物组的稳定结构和正常运转是人类 健康 、生态系统稳定的重要保障。

自2007年美国启动“人类微生物组计划”以来,加拿大、日本、法国、欧盟、中国积极参与,并先后启动了相关的微生物组计划,足以说明世界各国已将微生物组研究作为战略 科技 前沿领域。从研究方式看,微生物组更加强调多学科的交叉会聚和跨领域的合作研究。从技术手段看,除了培养组学、高通量测序和生物信息技术等为代表的新一代微生物学技术外,宏基因组学技术在微生物组研究中也发挥了重要作用,它运用功能基因筛选或测序分析等手段,通过对环境样品中的微生物群体基因组进行研究,对微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系进行解析。从应用前景看,目前微生物组研究主要围绕系统解析微生物组的结构和功能、厘清相关调控机制等方面开展,并逐步形成了从基础研究到应用产业化的创新链条。以被称为“人类第二基因组”的人类微生物组为例,现有研究表明人体微生物组在消化、代谢、免疫、疾病预防和治疗等方面都发挥着重要作用。目前,肠道菌群检测已经转化为临床技术,可用于癌症筛查、疾病治疗和药物开发等方面。同时,在代谢病治疗,尤其是肥胖症和糖尿病的治疗上,微生物组的研究成果也发挥了重要作用。

为了更大限度地发掘和研究不同生态系统中的微生物组资源,2016年5月美国宣布启动“国家微生物组计划”以支持跨学科研究,开发平台技术,解决不同生态系统中微生物的基本问题,并提高微生物数据的访问等。我国也非常重视对微生物组的研究,《“十三五”国家 科技 创新规划》就将人体微生物组研究摆在了重要位置,明确提出了“开展人体微生物组解析及调控等关键技术研究”的任务。《“十三五”生物技术创新专项规划》还确定了“力争在微生物组学技术等方面取得重大突破,使相关研究水平进入世界先进行列”的目标要求。2017年12月,“中国科学院微生物组计划”正式启动,该计划汇集了国内微生物组研究领域的权威机构,包括中国科学院上海生命科学研究院、中国科学院生物物理研究所、北京协和医院等14家机构,聚焦“人体和环境 健康 ”微生物组研究,为人类 健康 问题和 社会 可持续发展提供新的解决之道。可以预见在不久的将来,微生物组研究的相关成果和技术将更加广泛地渗透到医药、农业、能源、工业、环保等领域,成为破解人类 健康 、环境生态、资源瓶颈、粮食保障等重大问题的重要路径。

无处不在的微生物与人类共同生存了数百万年,它们曾造福于人类,也曾给人类造成毁灭性的灾难,始终保持着“亦敌亦友”的奇妙关系。人类对微生物的了解、 探索 任重而道远,对微生物组的研究也许正是我们打开未知世界大门的钥匙,我们期待着微生物组的研究能够帮助人类更好地了解微生物、利用微生物以应对当今和未来所面临的巨大挑战。

购买杂志,点击“阅读原文”

以下为生物学家格里菲斯在小鼠身上进行的肺炎双球菌转化的几个实验: ①将无毒性的R型活细菌注射入小鼠

1、拟核 质粒 不遵循(原核生物无性繁殖)2、转化因子 格里菲斯加入的是加热杀死的S型细菌,包含了S型细菌的各种成分例如糖类、脂质、蛋白质、DNA、RNA,因此无法确定该物质具体是谁。②将分离得到的蛋白质和DNA分别与R型细菌混合培养。(或将分离得到的蛋白质与DNA分别与R型细菌混合注射到不同小鼠体内)③观察实验结果,与蛋白质一同培养的R型细菌只长出R型细菌菌落,与DNA混合培养的R型细菌长出了S型菌落。(注射了蛋白质与R型细菌混合物的小鼠不死亡,注射了DNA与R型细菌混合物的小鼠死亡)结论:转化因子是DNA最后:有空打这么多字问题,不如看看书,这个知识点不难,生物很有趣,加油吧少年。

格里菲斯小鼠实验有获得诺贝尔奖吗

没有获得。生物的遗传物质被证明是DNA,这称得上是20世纪最重大的科学发现之一,然而其发现者——美国生物化学家奥斯瓦尔德·艾弗里(O.Avery,1877-1955)却没有因此获得诺贝尔生理学或医学奖。在当时,人们已经认识到染色质是由DNA和蛋白质组成的,而基因又位于染色体上,所以遗传物质应该是这两者之一。20世纪20年代,超速离心法的运用表明蛋白质是大分子,具有复杂结构。不幸的是,当时生物化学界的权威列文由于受到计量精度的限制,误以为4种碱基含量都是一样的,在1921年提出了关于核酸组成的“四核苷酸假说”,严重阻碍了核酸研究达30年之久。

发现遗传物质的化学本质是dna是谁

DNA的发现自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究.早在1868年,人们就已经发现了核酸.在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌"’作战"而战死的白细胞和被杀死的人体细胞的"遗体".于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用.他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质.霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的.于是他便给这种从细胞核中分离出来的物质取名为"核素",后来人们发现它呈酸性,因此改叫"核酸".从此人们对核酸进行了一系列卓有成效的研究.20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子.核苷酸是由碱基、核糖和磷酸构成的.其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA).列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说".这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识.人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用.蛋白质的发现比核酸早30年,发展迅速.进人20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现.1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链.于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用.如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用.因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体.1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验.他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌.这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌.这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏).格里菲斯称该核酸为"转化因子".1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的"转化因子",并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明"转化因子"是DNA.但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用.美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移.因为他们在电子显微镜下观察到了噬菌体的形态和进人大肠杆菌的生长过程.噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它.它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩.当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了.进人细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌.1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验.他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S.先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖.这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由DNA的指令合成的.这一结果立即为学术界所接受.几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果.在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性.因此,他对列文的"四核苷酸假说"产生了怀疑.在1948-1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果.实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等.说明DNA分子中的碱基A与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据.1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生.沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进人芝加哥大学学习.当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程.在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密".他善于集思广益,博取众长,善于用他人的思想来充实自己.只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识.沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员.为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学.有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片.从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回.什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克.克里克(1916)上中学时对科学充满热情,1937年毕业于伦敦大学.1946年,他阅读了《生命是什么?--活细胞的物理面貌卜书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣.1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了.当时克里克比沃森大12岁,还没有取得博士学位.但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸.同时沃森感到在他所接触的人当中,克里克是最聪明的一个.他们每天交谈至少几个小时,讨论学术问题.两个人互相补充,互相批评以及相互激发出对方的灵感.他们认为解决DNA分子结构是打开遗传之谜的关键.只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构.为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末.在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题.从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往.1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立DNA结构模型,只能利用别人的分析数据.他们很快就提出了一个三股螺旋的DNA结构的设想.1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败.有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的"B型"DNA的X射线衍射的照片.沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的"A型"简单得多,只要稍稍看一下"B型"的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了.克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势.他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念.他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设.有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性.突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌岭一胞嘧啶对有着相同的形状,于是精神为之大振.因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了.查加夫规律也就一下子成了DNA双螺旋结构的必然结果.因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了.那么,两条链的骨架一定是方向相反的.经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装.从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对.由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的.下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较.他们又一次打电话请来了威尔金斯.不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上.1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖.DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想.从此,人们立即以遗传学为中心开展了大量的分子生物学的研究.首先是围绕着4种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究.1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念.它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位.在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的.一定结构的DNA,可以控制合成相应结构的蛋白质.蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的.因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的.在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类.现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势.本文摘自《创造发明1000例》广西师范大学出版社2001年7月版

关于生物学家格里菲斯到此分享完毕,希望能帮助到您。